

Learning Topological Representations for Deep Image Understanding

Xiaoling Hu

Committee: Prof. Dimitris Samaras, Prof. Haibin Ling Prof. Chao Chen (Advisor), Prof. Fuxin Li

Topology is everywhere

Road network reconstruction

Topological correctness is one of the main challenges in road network reconstruction!

Zhu, Lingli, et al. "Automated 3D scene reconstruction from open geospatial data sources: Airborne laser scanning and a 2D topographic database." *Remote Sensing* (2015).

Neuron reconstruction

Incorrect topology results in incorrect merge or split!

Januszewski, Michał, et al. "High-precision automated reconstruction of neurons with flood-filling networks." *Nature methods* (2018).

Vasculature morphology measurement

Correct measurement of topology leads to powerful biomarkers!

Braman, Nathaniel, et al. "Novel Radiomic Measurements of Tumor-Associated Vasculature Morphology on Clinical Imaging as a Biomarker of Treatment Response in Multiple Cancers." *Clinical Cancer Research* (2022).

Quantification of mouse brain

Structure yields biological insights into the vascular function of the brain!

Todorov, Mihail Ivilinov, et al. "Machine learning analysis of whole mouse brain vasculature." *Nature methods* (2020).

Data with rich structural information

Challenges

- Complex topology/structure
- > Noisy data
- Limited labels

Difficult to analyze!

My research: Structure-informed image analysis

• Problems

- Analyze structures with complex topology and geometry
- Applications
 - Vessels, neurons, cells, etc.
- Challenges
 - Incorrect topology (extraction)
 - Purely data-driven methods are topology-agnostic
 - Annotations are hard to obtain

Hu et al. NeurIPS'19.

Key methodology: Topology

• Explicit modeling of complex structures from data

- Math theory: algebraic topology
 - Persistent homology
 - Discrete Morse theory
 - Homotopy warping

Combine topology with deep learning organically

Differentiability

DL methods incorporating classical topological theory

Persistent homology

• Discrete Morse theory

Homotopy warping

Hu et al. NeurIPS'19, Hu et al. ICLR'21, Hu et al. NeurIPS'22.

Research overview

Methodology

- > Teach neural network to think in topology/structure
- > Topological/structural **prior/regularization/feature**

Toolbox

- Persistent homology
- Discrete Morse theory
- Digital topology

Applications

- Image segmentation
- Uncertainty estimation

.

Future Directions

Imperfect data

.

- Topological quantification

Outline

Topological loss for image segmentation

- Persistent homology based loss (NeurIPS'19, MICCAI'21)
- Homotopy warping loss (NeurIPS'22)

Beyond pixel-wise representation

- Discrete Morse theory loss (ICLR'21, Spotlight)
- Topological/Structural representation of images (ICLR'23, Spotlight)

Extensions

Trojan detection with topological prior (ICLR'22)

• Future work

CNN are prone to topological errors

- Existing methods optimize w.r.t. per-pixel accuracy
- Topological errors
 - broken connection, missing components
- Broken membranes
 - small per-pixel error
 - topological error large error in downstream analysis

Classic CNN

Solution: Topological loss [NeurIPS'19]

- Loss function train the model to be topology-preserving
 - Repeatedly evaluate the accuracy in topology and force the model to correct mistakes
- Betti number

▶

- \succ 0-dim betti number b_0 : number of connected components
- \succ 1-dim betti number b_1 : number of cycles
- ➢ 2-dim betti number b_2 : number of voids

$$b_0 = 1, b_1 = 11, b_{n \ge 2} = 0$$

Solution: Topological loss [NeurIPS'19]

• Betti number error – topological difference between seg. and GT

- Challenge: not differentiable;
- Solution: persistent homology

Intuition: focus on likelihood f

- How far is *f* from generating a segmentation *X* with correct topology?
- What is the best way to fix X by changing f?

Likelihood f'

Compare with a worse likelihood f' (same segmentation X)

Ground Truth

Segmentation

Likelihood

Persistent homology

- Superlevel set: $f^{\alpha} = \{x | f(x) \ge \alpha\}$
- Dgm(f) = {death(p), birth(p)}, 0-dim (blue), 1-dim (burgundy)

 ${\bf Likelihood}\,f$

Persistence barcodes/diagrams

Topological loss (L_{topo}) = Distance between diagrams

 $\min_{\gamma \in \Gamma} \sum_{p \in \mathrm{Dgm}(f)} ||p - \gamma(p)||^2 = \sum_{p \in \mathrm{Dgm}(f)} [\mathrm{birth}(p) - \mathrm{birth}(\gamma^*(p))]^2 + [\mathrm{death}(p) - \mathrm{death}(\gamma^*(p))]^2$

Differentiable?

 $\min_{\gamma \in \Gamma} \sum_{p \in \mathrm{Dgm}(f)} ||p - \gamma(p)||^2 = \sum_{p \in \mathrm{Dgm}(f)} [\mathrm{birth}(p) - \mathrm{birth}(\gamma^*(p))]^2 + [\mathrm{death}(p) - \mathrm{death}(\gamma^*(p))]^2$

- Depending on critical thresholds: topological changes happen, e.g., birth/death times
- Uniquely determined by the critical locations/pixels (including maxima, minima and saddle points)

Topological loss is actually defined on specific pixels!

Gradient

- $c_b(p)$ birth critical point of p; $c_d(p)$ death critical point of p
- Assume γ^* fixed, $c_b(p)$ and $c_d(p)$ are fixed

$$\sum_{p \in \text{Dgm}(f)} 2[f(c_b(p)) - \text{birth}(\gamma^*(p))] \frac{\partial f(c_b(p))}{\partial \omega} + 2[f(c_d(p)) - \text{death}(\gamma^*(p))] \frac{\partial f(c_d(p))}{\partial \omega}$$

How it looks like in training?

- Green dots: to be fixed; Red dots: to be removed
- As training continues
 - fewer red dots as noises are removed
 - green dots move closer to upper left corner (getting fixed)

Localized topological loss

- Evaluate topology in whole image
 - Expensive
 - Too many dots: matching is difficult
- Localized topological measure: relative homology
- Sample patches over images and evaluate topology loss

Overview

Qualitative results

Quantitative results

- Per-pixel accuracy, Adapted Rand Index, Variation of Information
- Betti number error
 - Measures topological differences/errors directly
- EM (neuron) image segmentation datasets

_					
Dataset	Method	Accuracy	ARI	VOI	Betti Error
	DIVE	0.9640 ± 0.0042	0.9434 ± 0.0087	1.235 ± 0.025	3.187 ± 0.307
	U-Net	0.9678 ± 0.0021	0.9338 ± 0.0072	1.367 ± 0.031	2.785 ± 0.269
ISBI12	Mosin.	0.9532 ± 0.0063	0.9312 ± 0.0052	0.983 ± 0.035	1.238 ± 0.251
	TopoLoss	0.9626 ± 0.0038	$\textbf{0.9444} \pm \textbf{0.0076}$	$\textbf{0.782} \pm \textbf{0.019}$	$\textbf{0.429} \pm \textbf{0.104}$
	DIVE	$\textbf{0.9642} \pm \textbf{0.0018}$	0.6923 ± 0.0134	2.790 ± 0.025	3.875 ± 0.326
	U-Net	0.9631 ± 0.0024	0.7031 ± 0.0256	2.583 ± 0.078	3.463 ± 0.435
ISBI13	Mosin.	0.9578 ± 0.0029	0.7483 ± 0.0367	1.534 ± 0.063	2.952 ± 0.379
	TopoLoss	0.9569 ± 0.0031	$\textbf{0.8064} \pm \textbf{0.0112}$	$\textbf{1.436} \pm \textbf{0.008}$	$\textbf{1.253} \pm \textbf{0.172}^{\top}$
	DIVE	$\textbf{0.9498} \pm \textbf{0.0029}$	0.6532 ± 0.0247	2.513 ± 0.047	4.378 ± 0.152
	U-Net	0.9468 ± 0.0048	0.6723 ± 0.0312	2.346 ± 0.105	3.016 ± 0.253
CREMI	Mosin.	0.9467 ± 0.0058	0.7853 ± 0.0281	1.623 ± 0.083	1.973 ± 0.310
	TopoLoss	0.9456 ± 0.0053	$\textbf{0.8083} \pm \textbf{0.0104}$	$\textbf{1.462} \pm \textbf{0.028}$	1.113 ± 0.224

Segmentation during training

Rationale of topological loss

- Likelihood map/segmentation are stabilized globally
 - Mostly because of cross-entropy loss
- Topological errors are gradually fixed by the topological loss
 - Likelihood map only change at topology-relevant locations
- Topological loss compliments cross-entropy
 - Combating sampling bias
 - Identifying difficult locations and increase their weights in training
- Without cross-entropy loss, inferring topology from a completely random likelihood map is meaningless

3D topology-preserving segmentation (MICCAI'21)

- Topological loss for 3D anisotropic cases
 - Spatial topological-attention: Spatial topological information across adjacent slices
 - Iterative topological-attention: Improve the stability of the topologically critical maps

Yang, Jiaqi*, Hu, Xiaoling*, et al. "A Topological-Attention ConvLSTM Network and Its Application to EM Images." MICCAI (2021).

Homotopy warping loss (NeurIPS'22)

• Efficiently identify topological critical points

[Hu et al. NeurIPS'19] – Topological loss by matching persistence diagram

Simple points

• Flipping the label of p will not change the topology

Homotopy warping: flip simple points

• Warping red mask towards the white

• Warping white mask towards the red

Warping example

GT

Prediction

Zoom-in

Zoom-in

Question: Pixel VS structure representations?

Models make pixel level predictions

Ground Truth

Likelihood Map

Segmentation

Structure Inference

Structure-level reasoning/prediction/inference!

Outline

Topological loss for image segmentation

- Persistent homology based loss (NeurIPS'19, MICCAI'21)
- Homotopy warping loss (NeurIPS'22)

Beyond pixel-wise representation

- Discrete Morse theory loss (ICLR'21, Spotlight)
- Topological/Structural representation of images (ICLR'23, Spotlight)

Extensions

Trojan detection with topological prior (ICLR'22)

• Future work

Structural loss

- Fix topological errors by identifying critical pixels
 - ➢ [Hu et al. NeurIPS'19] Topological loss by matching persistence diagram

Input Image

Likelihood Map

Critical Points

DMT Structures

Not efficient enough!

Discrete Morse theory

Likelihood Map

Density Map

Density Map for highlighted region

Gradient:
$$\nabla f(x) = [\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, ..., \frac{\partial f}{\partial x_d}]^T$$

Critical Points (minimum, maximum, saddle) $\nabla f(x) = 0$

Persistence-based structure pruning

Likelihood Map

Ground Truth

Improperly pruned structures

Properly pruned structures

DMT loss [ICLR'21, Spotlight]

- Loss function train the model to be topology-aware
 - Identity the critical structures instead of critical points

New problem

Limited annotated samples

- Annotations are expensive
- Annotations can be noisy

Solution

Active learning

Yoo et al. CVPR'19.

The key of active learning is how to measure the uncertainty.

Uncertainty estimation

• What is uncertainty estimation?

How models are confident of their predictions

Importance of uncertainty?

- Interpretability
- Active learning

Question: How certain is classifier of

Probabilistic structural representation [ICLR'23, Spotlight]

- Structure-level uncertainty estimation
 - Focus on structure instead of pixel level
 - Easy to correct

Overview

Probabilistic model

44

Inference and efficient annotation pipeline

Uncertainty illustration

Semi-automatic efficient annotation/proofreading

1.0

- 0.8

- 0.6

0.4

0.2

0.0

Image

Segmentation

Structure uncertainty

Application on mitochondria segmentation

Uncertainty map

Outline

Topological loss for image segmentation

- Persistent homology based loss (NeurIPS'19, MICCAI'21)
- Homotopy warping loss (NeurIPS'22)

Beyond pixel-wise representation

- Discrete Morse theory loss (ICLR'21, Spotlight)
- Topological/Structural representation of images (ICLR'23, Spotlight)

• Extensions

- Trojan detection with topological prior (ICLR'22)
- Future work

Trojan detection (ICLR'22)

- Goal: Find a classifier to distinguish clean models and Trojaned models
- Challenges
 - Limited-data setting: only a few clean samples per class; Clean and Trojaned models perform the same on them
 - If Trojaned, trigger (location, shape, color) is unknown

(a) Trojaned examples

(b) Perform the same on clean images

Trigger reconstruction

- Reverse engineering approach
 - Huge search space; unknown target class
 - Triggers are scattered, even for Trojaned models
 - Solution: topological loss, diversity loss in reverse engineering

Clean sample

True trigger

Reconstructed

Reverse-engineering pipeline

Diversity loss

• Trigger candidates different from each other

Topological loss

- Topological constraint: the trigger is a single component
 - Localized trigger
 - No strong assumption on shape/size
 - > Can be written as a topological loss

Final loss

• Total loss

$$L(\mathbf{m}, \boldsymbol{\theta}; \mathbf{x}, f, c^*) = L_{flip}(\ldots) + \lambda_1 L_{div}(\ldots) + \lambda_2 L_{topo}(\ldots) + R(\mathbf{m})$$

• Flip loss

$$L_{flip}(\mathbf{m}, \boldsymbol{\theta}; \mathbf{x}, f, c^*) = f_{c^*}(\phi(\mathbf{x}, \mathbf{m}, \boldsymbol{\theta}))$$

• Diversity loss

$$L_{div}(\mathbf{m},oldsymbol{ heta}) = -\sum_{j=1}^{i-1} ||\mathbf{m}\odotoldsymbol{ heta} - \mathbf{m}_j\odotoldsymbol{ heta}_j||_2$$

• Topological loss

$$L_{topo}(\mathbf{m}) = \sum_{p \in \mathrm{Dgm}(m) \setminus \{p^*\}} [\mathrm{birth}(p) - \mathrm{death}(p)]^2$$

Qualitative results

Quantitative results

• Performances comparison on the TrojAI datasets

Method	Metric	TrojAI-Round1	TrojAI-Round2	TrojAI-Round3	TrojAI-Round4
NC	AUC	0.50 ± 0.03	0.63 ± 0.04	0.61 ± 0.06	0.58 ± 0.05
ABS	AUC	0.68 ± 0.05	0.61 ± 0.06	0.57 ± 0.04	0.53 ± 0.06
TABOR	AUC	0.71 ± 0.04	0.66 ± 0.07	0.50 ± 0.07	0.52 ± 0.04
ULP	AUC	0.55 ± 0.06	0.48 ± 0.02	0.53 ± 0.06	0.54 ± 0.02
DLTND	AUC	0.61 ± 0.07	0.58 ± 0.04	0.62 ± 0.07	0.56 ± 0.05
Ours	AUC	$\textbf{0.90} \pm \textbf{0.02}$	$\textbf{0.87} \pm \textbf{0.05}$	$\textbf{0.89} \pm \textbf{0.04}$	$\textbf{0.92} \pm \textbf{0.06}$
NC	ACC	0.53 ± 0.04	0.49 ± 0.02	0.59 ± 0.07	0.60 ± 0.04
ABS	ACC	0.70 ± 0.04	0.59 ± 0.05	0.56 ± 0.03	0.51 ± 0.05
TABOR	ACC	0.70 ± 0.03	0.68 ± 0.08	0.51 ± 0.05	0.55 ± 0.06
ULP	ACC	0.58 ± 0.07	0.51 ± 0.03	0.56 ± 0.04	0.57 ± 0.04
DLTND	ACC	0.59 ± 0.04	0.61 ± 0.05	0.65 ± 0.04	0.59 ± 0.06
Ours	ACC	$\textbf{0.91} \pm \textbf{0.03}$	$\textbf{0.89} \pm \textbf{0.04}$	$\textbf{0.90} \pm \textbf{0.03}$	$\textbf{0.91} \pm \textbf{0.04}$

Research summary

Topology-aware deep image segmentation

Hu et al. NeurIPS'19, MICCAI'21, ISBI'21, ICLR'21, NeurIPS'22, ECCV'22.

Trojan detection

Hu et al. ICLR'22.

Uncertainty estimation

Hu et al. ICLR'23, Li et al. ICLR'23.

Biomedical applications

Yang et al. under review, Konwer et al. under review.

Data with rich structural information

- Challenges
 - Complex topology/structure
 - Noisy data
 - Limited labels

Difficult to analyze!

Career goal

Develop principled methods

- Model the intrinsic structures of data
- Use topological/structural priors

Different types of scenarios/data

- Imperfect data: Medical imaging, general data science
- Different types of data: Point cloud, Graph

Direction 1: Imperfect data

Annotations are difficult to obtain

- Leverage information from unlabeled data
- Crowd counting, cell detection ...

Active Learning

Explore the structures within unlabeled data!

Yoo et al. CVPR'19.

Direction 2: Deep learning based quantification analysis

- Combine topology-aware segmentation and uncertainty estimation
 - Interactive annotation/proofreading
 - Downstream topology-aware analysis
 - Neurons, vasculatures, digital pathology images, etc.

Direction 3: Other types of data

Topology on different types of data

Extending topology non-trivially to other types of data!

Point Cloud

de Surrel, Thibault, et al. "RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds." *TAGL Workshops* (2022).

Yan, Zuoyu, et al. "Cycle Representation Learning for Inductive Relation Prediction." *ICML* (2022).

Direction 4: Topo attention in NLP/LLM

Topology of attention connectivity

- Prune number of heads
- Robust against adversarial attacks

Using TDA to analyze the structures of neural networks!

Perez, Ilan, et al. "The Topological BERT: Transforming Attention into Topology for Natural Language Processing." *arXiv* (2022).

Reference

- Hu, Xiaoling, et al. "Topology-preserving deep image segmentation." *NeurIPS* (2019).
- Hu, Xiaoling, et al. "Topology-aware segmentation using discrete Morse theory." *ICLR* (2021, Spotlight).
- Yang, Jiaqi*, **Hu, Xiaoling***, et al. "3D topology-preserving segmentation with compound multi-slice representation." *ISBI* (2021).
- Yang, Jiaqi*, **Hu, Xiaoling***, et al. "A topological-attention convlstm network and its application to em images." *MICCAI* (2021).
- Hu, Xiaoling, et al. "Trigger hunting with a topological prior for trojan detection." *ICLR* (2022).
- Gupta, Saumya*, Hu, Xiaoling*, et al. "Learning topological interactions for multi-class medical image segmentation." ECCV (2022, Oral).
- Hu, Xiaoling. "Topology-aware image segmentation with homotopy warping." *NeurIPS* (2022).
- **Hu, Xiaoling**, et al. "Deep statistic shape model for myocardium segmentation." *arXiv preprint arXiv:2207.10607* (2022).
- Hu, Xiaoling, et al. "Learning probabilistic topological representation using discrete Morse theory." *ICLR* (2023, **Spotlight**).
- Li, Chen, Hu, Xiaoling, et al. "Confidence estimation using unlabeled data." *ICLR* (2023).
- Yang, Jiaqi, **Hu, Xiaoling**, et al. "Weakly supervised learning for lesion segmentation on oct images with anomaly attention mechanism." *under review*.
- Konwer, Aishik, Hu, Xiaoling, et al. "Enhancing modality-agnostic representations via meta-learning for brain tumor segmentation." *under review*.

Credits are due to the committee members, collaborators, and also my family!

Thank you for your attention! Q&A

