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My long-term vision is to develop advanced AI systems that can significantly enhance disease diagno-
sis and treatment, transforming healthcare through technology. Although remarkable strides have been
made in data-driven approaches due to the increasing availability of large-scale datasets, the challenge
of effectively leveraging the data remains at the forefront. In practice, simply applying brute-force meth-
ods to data without considering its structure, topology, or geometric properties can limit the success of
models, particularly when faced with the complex, heterogeneous data that is common in biomedical con-
texts. Another pervasive challenge is that the data itself is often far from ideal, especially in healthcare
settings. Data may be noisy, incomplete, imbalanced, or otherwise imperfect, which makes it difficult to
rely on conventional models that are designed to work optimally with clean, well-labeled, and extensive
training datasets. The over-reliance on pristine training sets has emerged as a major bottleneck in the
development of AI systems that perform well in real-world applications, where such ideal datasets are
rare.

To overcome these challenges, my current research interest lies in the intersection of machine learning
(ML), computer vision (CV), medical image computing (MIC), and topological data analysis (TDA), and is
focused on developing innovative algorithms that are both theoretically sound and empirically
effective in diverse and imperfect data contexts, with a particular emphasis on biomedical
applications. Specifically, my work revolves around the following core themes:

1. Topology-Driven Deep Image Analysis
2. Trustworthy Machine Learning
3. Multimodal AI and Generative AI (GenAI)
4. Healthcare Applications

Each of these themes addresses critical gaps in current AI research, especially when applied to complex,
imperfect data in the healthcare domain. In the following sections, I will delve deeper into my recent
contributions within these areas, highlighting key achievements and outlining the future directions of my
work. I believe that by combining rigorous theoretical insights with practical, application-driven innova-
tion, we can develop AI solutions that are more adaptable, interpretable, and reliable, ultimately making
a profound impact on the healthcare industry.

Research Progress

1 Topology-Driven Deep Image Analysis

Despite the strong predictive power of deep learning methods, they are mostly learning pixel-wise repre-
sentations, thus creating significant barriers in scalable annotation and downstream analysis. The first
direction of my research is to explore beyond pixel-wise representations: How can we learn topological
representations to understand the topology, structure, and geometry for image tasks?

As a pioneer in topology-driven deep image analysis, I have focused on designing novel topology-
preserving deep image segmentation algorithms [1, 2, 3, 4, 5, 6, 7, 8, 9]. Also, I have proposed to leverage
topological tools to reason structures directly for biomedical imaging tasks [10, 11].
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Figure 1: Illustration of the importance of topologi-
cal correctness in a neuron image segmentation task.
(a) an input neuron image. (b) ground truth segmen-
tation. (c) result of a baseline method without topo-
logical guarantee. (d) My method.

Topology-preserving deep image segmenta-
tion. Image segmentation, i.e., assigning labels
to all pixels of an input image, is crucial in many
computer vision tasks. State-of-the-art segmen-
tation methods learn high-quality feature repre-
sentations through an end-to-end trained deep
network and achieve satisfactory per-pixel accu-
racy. However, these segmentation algorithms are
still prone to errors on fine-scale structures, such
as small object instances, instances with multi-
ple connected components, and thin connections.
These fine-scale structures may be crucial in ana-
lyzing the functionality of the objects. TopoLoss [1] is a pioneer end-to-end deep segmentation network with
guaranteed topological correctness. In particular, based on persistent homology, I proposed a differentiable
topological loss that enforces the segmentation results to have the same topology as the ground truth, i.e.,
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having the same Betti number (number of connected components and handles). A neural network trained
with such a loss will achieve high topological fidelity without sacrificing per-pixel accuracy. I have shown
that when the topological loss is decreased to zero, the segmentation is guaranteed to be topologically cor-
rect, i.e., have identical topology as the ground truth. These fine-scale structures are crucial in analyzing
the functionality of the objects. See Figure 1 as an example.
Deep structural reasoning for biomedical imaging. Beyond topology-preserving deep image seg-
mentation, I have also developed advanced deep learning methods that integrate structural understand-
ing into biomedical image analysis [10, 11]. More specifically, I proposed novel deep learning-based method
that directly learns the topological/structural representation of images [10, 11]. To move from pixel space
to structure space, I applied the classic discrete Morse theory to decompose an image into a Morse com-
plex, consisting of structural elements like branches, patches, etc. These structural elements are hy-
pothetical structures one can infer from the input image. These approaches emphasize leveraging both
the spatial and functional relationships inherent in biological structures, such as organs, tissues, and
cellular formations, to potentially enhance interpretability and diagnostic accuracy. By embedding topo-
logical/structural/geometric priors and reasoning capabilities into deep neural networks, these methods
can better capture complex anatomical relationships as well as measure structural level uncertainty (Fig-
ure 2). The uncertainty maps provide hints for downstream human-in-the-loop proofreading and improve
reasoning efficiency. This structural reasoning not only aids in providing more accurate predictions but
also in building robust models that generalize well across diverse patient populations and imaging modal-
ities, paving the way for improved diagnostic tools in medical applications.

(a) Image (b) GT (c) Pro.UNet (d) Pixel Uncer. (e) Ours (f) Stru. Uncer.
Figure 2: Illustration of structural segmentation and structure-level uncertainty. Compared with
Probabilistic-UNet (Figure 2(c)-(d)), the proposed method [10] is able to generate structure-preserving
segmentation maps (Figure 2(e)), and structure-level uncertainty (Figure 2(f)).

2 Trustworthy Machine Learning: Reliability, Interpretability, and Robustness

Despite the power of deep networks, their overconfidence is a common issue. For example, in autonomous
driving and computer-aided diagnosis, analyzing low-confidence samples/regions can help identify sub-
populations of events or patients that deserve extra consideration. A good model should know both what
it knows and what it does not know, thus reliability and interoperability are essential in the deployment of
the models. On the other hand, training powerful deep neural networks usually requires a large amount of
data. While the obtained data are usually not ideal, especially in healthcare scenarios. How to train robust
models under imperfect data scenarios (e.g., missing modalities) is of great value and remains challenging
in practice.

I have developed novel algorithms for uncertainty estimation applied to both curvilinear structure
data [10, 11] and unlabeled data [12, 13], enhancing model interpretability and demonstrating their relia-
bility. Additionally, I have created robust algorithms to address practical challenges under imperfect data
conditions, including crowd counting [13], lesion segmentation [14], and brain tumor segmentation [15].

Learning with reliability and interpretability. In fields such as healthcare, finance, and autonomous
systems, the ability to understand and trust the predictions made by algorithms is paramount. Reliable
models are those that consistently yield accurate results across diverse datasets and conditions, reduc-
ing the risk of unexpected failures. Simultaneously, interpretability allows stakeholders ranging from
clinicians to data scientists to grasp how specific features influence outcomes, fostering confidence in the
model’s applications. Learning with reliability and interpretability is essential in developing models that
not only perform well but also provide transparent insights into their decision-making processes. I have
proposed novel algorithms for uncertainty estimation applied to both curvilinear structure data [10, 11]
and unlabeled data [12, 13]. By combining these two aspects, we can leverage advanced machine learning
techniques while ensuring ethical considerations and regulatory compliance are met, ultimately promot-
ing more responsible and effective use of artificial intelligence in critical decision-making contexts.
Learning with robustness. Robustness ensures that a model remains accurate and reliable even when
faced with noisy inputs, adversarial attacks, or shifts in data distribution. By incorporating techniques
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such as data augmentation, regularization, and ensemble methods, developers can create systems that
generalize well across different scenarios, minimizing overfitting to specific datasets. Learning with ro-
bustness is a vital aspect of developing machine learning models that can withstand variations and uncer-
tainties in real-world data. The focus on robustness is particularly crucial in high-stakes domains such as
healthcare, finance, and autonomous driving, where errors can have significant consequences. I have cre-
ated robust algorithms to address practical challenges under imperfect data conditions, including crowd
counting [13], lesion segmentation [14], and brain tumor segmentation [15]. Ultimately, learning with
robustness enhances the resilience of models, allowing them to adapt to changing environments while
maintaining performance and trustworthiness.

3 Empowering Clinical and Biomedical Applications

As mentioned above, my long-term vision is to develop advanced AI systems that can significantly enhance
disease diagnosis and treatment, transforming healthcare through technology. Besides developing novel
algorithms with firm theoretical foundations, I have also collaborated with radiologists and ophthalmolo-
gists and applied the developed algorithms to challenging practical problems.

I have utilized machine learning tools for brain image analysis [16, 17, 18, 19, 20, 21]. Also, I have devel-
oped algorithms for segmentations of Electron microscopy (EM), vessel, tumor, and lesions [1, 14, 15] as
well as pathology image analysis [22, 23, 24].

Brain image analysis. Brain image analysis involves the application of advanced imaging techniques
and computational methods to study the structure and function of the brain. Utilizing modalities such
as magnetic resonance imaging (MRI), computed tomography (CT), and positron emission tomography
(PET), researchers can obtain detailed visual representations of brain anatomy and activity. The analysis
typically encompasses various tasks, including segmentation, registration, and classification, which aid
in identifying abnormalities such as tumors, lesions, or neurodegenerative diseases. With the integration
of machine learning and artificial intelligence, brain image analysis has significantly advanced, enabling
more accurate diagnostics and personalized treatment strategies. Specifically, I have used topological
tools for lesion counting [16], estimated uncertainty for image registration [17, 19], designed generative
AI (GenAI) and scalable methods for brain image segmentation [20, 21], and developed multimodal models
for brain imaging [18]. This interdisciplinary field not only enhances our understanding of brain disorders
but also contributes to ongoing efforts in neuroscience research and clinical practice.
General biomedical applications. General biomedical applications encompass a wide range of tech-
nologies and methodologies aiming at improving health outcomes, diagnostics, and treatment strategies.
This field integrates principles from biology, medicine, engineering, and data science to address com-
plex challenges in healthcare. Key applications include the development of medical imaging techniques
for enhanced visualization of biological structures, the use of bioinformatics for analyzing genomic data
to identify disease markers, and the implementation of wearable devices that monitor patient health in
real time. Additionally, advancements in telemedicine facilitate remote consultations, making healthcare
more accessible. I have worked on EM, vessel, tumor, and lesion segmentations [1, 14, 15] as well as pathol-
ogy image analysis [22, 23, 24]. Also, I have developed multimodal [15, 25] and GenAI methods [24, 26]
to solve biomedical problems.

As interdisciplinary research continues to flourish, general biomedical applications hold great promise
for personalized medicine, drug discovery, and public health initiatives, ultimately contributing to more
effective and efficient healthcare delivery systems.

Ongoing and Future Work

In summary, my research lies in the intersection of machine learning (ML), computer vision (CV),
medical image computing (MIC), and topological data analysis (TDA). I primarily focus on developing
algorithms that investigate the properties of complex data and learn from imperfect datasets. Beyond
these themes, I am keenly interested in addressing a wide range of challenges within the broader context
of medical AI. Specifically, I aim to extend my research from the Data, Model, Application perspectives
respectively in the future:

• Data: exploring underlying features of data. How can we efficiently utilize data while con-
sidering its structural properties? By investigating structural, topological, and geometric priors,
we may be able to guide the effective training of deep neural networks. However, until recently,
research has predominantly focused on purely data-driven methods. Incorporating structural, ge-
ometric, and topological information into deep neural networks is especially crucial for biomedical
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data. I have begun to make progress in this direction [1, 2, 3, 4, 6, 7, 8, 9, 10, 11]. And how do
accurate structures influence downstream analyses, such as quantification? Based on my current
work, I am poised to take the next step: quantifying how topology- and geometry-aware segmenta-
tion results impact downstream analyses. By extracting topology- and geometry-informed features,
we can conduct various interesting analyses, such as diagnosing retinal diseases and predicting the
risk of aortic aneurysm rupture. Figure 3 illustrates a pipeline for this downstream analysis. This
is an ongoing direction that I will continue to explore further.

Step 1: Uncertainty-Driven Topology-Aware Segmentation Pipeline Step 2: Topology-Aware Downstream Analysis

Topology-Aware 
Segmentation

Topological and 
Geometric Features Quantitative Analysis

Proofreading – Uncertainty 
Estimation

Final Segmentation

Figure 3: Workflow for uncertainty-driven topology-aware segmentation, and the downstream topol-
ogy/geometry aware analysis.

• Models: trustworthy models with reliability, interpretability, and robustness. How confident
is the model in its predictions? While many existing algorithms claim to achieve high performance,
it is crucial to assess their reliability, especially in biomedical contexts. A model should understand
both what it knows and what it does not know. My recent work on structure-wise uncertainty esti-
mation for curvilinear structure data [10, 11] and confidence estimation using unlabeled data [12]
takes a step in this direction. A pertinent research question arises from this work: How can we
utilize uncertainty estimation in unsupervised contexts? I have applied the uncertainty estimation
approach to crowd counting tasks and achieved promising results [13]. I believe that the proposed
reliable uncertainty estimation method can benefit even more unsupervised scenarios.
Another question is how we can develop algorithms and models that maintain robust performance
even when faced with imperfect data. The effectiveness of current data-driven methods heavily re-
lies on large amounts of labeled training data. However, in practical biomedical contexts, gathering
labeled data can be cost-prohibitive and time-consuming, often requiring specialized domain knowl-
edge. This reliance on diverse, high-quality training datasets significantly limits model applicability
in complex scenarios characterized by imperfect data, such as missing modalities or limited human
labeling. Furthermore, the uncertainty estimation I have been working on may provide insights
for handling imperfect data. For instance, can we focus on the most uncertain samples or regions to
enhance training in these challenging conditions? I have recently begun to explore this intriguing
direction [12, 13, 14, 15].

• Applications: empowering clinical and biomedical scenarios. Applications in clinical and
biomedical scenarios play a crucial role in transforming healthcare through innovative technologies
and methodologies. By harnessing data-driven approaches, such as artificial intelligence, machine
learning, and advanced imaging techniques, healthcare professionals can enhance diagnostic accu-
racy, personalize treatment plans, and improve patient outcomes. These applications empower clin-
icians to analyze complex medical data, identify patterns, and make informed decisions in real time,
thereby streamlining workflows and optimizing resource allocation. Additionally, they facilitate early
detection of diseases, enabling timely interventions that can significantly alter the course of patient
care. My recent works span from radiology [1, 14, 15] to pathology applications [22, 23, 24]. More
recently, I have leveraged machine learning tools to deal with brain image analysis [16, 17, 18, 19].
As these technologies continue to evolve, they hold the promise of revolutionizing the way medical
professionals approach diagnostics, treatment, and patient management, ultimately leading to more
efficient and effective healthcare delivery.

Over the next few years, I will continue to develop intelligent AI systems that assist in diagnosis and
disease treatment. I am eager to pose meaningful and impactful research questions and to create inno-
vative and effective solutions from both theoretical and empirical perspectives. I also enjoy collaborating
with experts in medical imaging, computer vision, machine learning, and related fields, including compu-
tational geometry, radiology, ophthalmology, and digital pathology. Working together, we can tackle these
challenges and advance the frontiers of healthcare technology.
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